436-find-right-interval
Question
https://leetcode.com/problems/find-right-interval/description/
Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
- You may assume the interval's end point is always bigger than its start point.
- You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ]
Output: [-1, 2, -1]
Explanation: There is no satisfied "right" interval for [1,4] and [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point.
Thought Process
- Brute Force
- Simply find the minimum index that has start greater than current end
- As we loop we need to find the start that is smaller than previous found start
- Time complexity O(n^2)
- Space complexity O(1) extra, O(n) for storing result
- Sort and Binary Search
- Save the position for each starts in map
- Create a separate to store the starts and sort them
- As we loop through the intervals array, we try to search the end in the starts array create in step ii
- If the return index, j, is equal to length that means we could not find a start pointer bigger than the end
- Otherwise, we need to get the index for starts[j] from our map and save it to out result array, res[i]
- Time complexity O(nlogn)
- Space complexity O(n)
- TreeMap
- Using treemap to store the entry, where entry's key is the interval's start and the value is the index, we can find each interval's end ceiling interval easily with built-in function
- Time complexity O(nlogn)
- Space complexity O(n)
- Sorted Both and Linear Scan
- Time complexity O(nlogn)
- Space complexity O(n)
Solution
public class Solution {
public int[] findRightInterval(Interval[] intervals) {
int[] res = new int[intervals.length];
for (int i = 0; i < intervals.length; i++) {
int min = Integer.MAX_VALUE;
int minindex = -1;
for (int j = 0; j < intervals.length; j++) {
if (intervals[j].start >= intervals[i].end && intervals[j].start < min) {
min = intervals[j].start;
minindex = j;
}
}
res[i] = minindex;
}
return res;
}
}
class Solution {
public int[] findRightInterval(Interval[] intervals) {
int n = intervals.length;
int[] res = new int[n], starts = new int[n];
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(intervals[i].start, i);
starts[i] = intervals[i].start;
}
Arrays.sort(starts);
for (int i = 0; i < n; i++) {
int j = binarySearch(starts, intervals[i].end, 0, n);
res[i] = j == n ? -1 : map.get(starts[j]);
}
return res;
}
private int binarySearch(int[] nums, int target, int i, int j) {
j--;
while (i <= j) {
int m = i + (j - i) / 2;
if (nums[m] == target) return m;
else if (nums[m] < target) i = m + 1;
else j = m - 1;
}
return i;
}
}
class Solution {
public int[] findRightInterval(Interval[] intervals) {
TreeMap<Integer, Integer> treeMap = new TreeMap<>();
int n = intervals.length;
for (int i = 0; i < n; i++) {
treeMap.put(intervals[i].start, i);
}
int[] res = new int [n];
for (int i = 0; i < n; i++) {
Map.Entry<Integer, Integer> entry = treeMap.ceilingEntry(intervals[i].end);
res[i] = entry == null? -1 : entry.getValue();
}
return res;
}
}
class Solution {
public int[] findRightInterval(Interval[] intervals) {
int n = intervals.length;
Interval[] starts = Arrays.copyOf(intervals, n);
Interval[] ends = Arrays.copyOf(intervals, n);
HashMap<Interval, Integer> hash = new HashMap<>();
for (int i = 0; i < n; i++) {
hash.put(intervals[i], i);
}
Arrays.sort(starts, (a, b) -> a.start - b.start);
Arrays.sort(ends, (a, b) -> a.end - b.end);
int j = 0;
int[] res = new int[n];
for (int i = 0; i < n; i++) {
while (j < n && starts[j].start < ends[i].end) {
j++;
}
res[hash.get(ends[i])] = j == n ? -1 : hash.get(starts[j]);
}
return res;
}
}