259-3sum-smaller
Question
https://leetcode.com/problems/3sum-smaller/description/
Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
Example:
Given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Thought Process
- Brute Force
- Triple loop for traversal through all elements
- Time complexity O(n^3)
- Space complexity O(1)
- Sort and Binary Search
- First, we sort the number
- Then we do a double loop and search the respective end element for the second element
- Time complexity O(n^2 logn)
- Space complexity O(1)
- Two Pointers
- As we loop through every element, we initialize the low pointer to be the next element and hi to be the end of element
- If we can find the hi element that nums[i] + nums[lo] + nums[hi] < target. we can get the count immediately using hi - lo, since any element in the range can replace hi element
- Time complexity O(n^2)
- Space complexity O(1)
Solution
class Solution {
public int threeSumSmaller(int[] nums, int target) {
int n = nums.length, count = 0;
for (int i = 0; i < n - 2; i++) {
for (int j = i + 1; j < n - 1; j++) {
for (int k = j + 1; k < n; k++) {
if (nums[i] + nums[j] + nums[k] < target) count++;
}
}
}
return count;
}
}
class Solution {
public int threeSumSmaller(int[] nums, int target) {
Arrays.sort(nums);
int n = nums.length, count = 0;
for (int i = 0; i < n - 2; i++) {
for (int j = i + 1; j < n - 1; j++) {
int k = search(nums, j + 1, n - 1, target - nums[i] - nums[j]);
count += k - j;
}
}
return count;
}
private int search(int[] nums, int low, int hi, int target) {
while (low <= hi) {
int mid = low + (hi - low) / 2;
if (nums[mid] < target) low = mid + 1;
else hi = mid - 1;
}
return hi;
}
}
class Solution {
public int threeSumSmaller(int[] nums, int target) {
Arrays.sort(nums);
int n = nums.length, count = 0;
for (int i = 0; i < n - 2; i++) {
int lo = i + 1, hi = n - 1;
while (lo < hi) {
if (nums[i] + nums[lo] + nums[hi] < target) {
count += hi - lo;
lo++;
} else {
hi--;
}
}
}
return count;
}
}