209-minimum-size-subarray-sum
Question
https://leetcode.com/problems/minimum-size-subarray-sum/description/
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.
Thought Process
- Presum and Binary Search
- We do partial sum on the array ending at that element
- Then we do binary search on sum[i] + s in the range between i and the n - 1
- Time complexity O(n logn)
- Space complexity O(n)
- Two Pointers and Running Sum
- Use two pointers to keep track the range of sum to add up to target
- Once the target is reach, we can get the length of range, and also deduct the beginning to start a new sequence
- Time complexity O(n)
- Space complexity O(1)
Solution
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int[] sums = new int[n];
sums[0] = nums[0];
for (int i = 1; i < n; i++) {
sums[i] = sums[i - 1] + nums[i];
}
if (sums[n - 1] < s) return 0;
int min = n;
for (int i = 0; i < n; i++) {
if (sums[i] >= s) {
int j = lowerBound(sums, 0, i, sums[i] - s);
min = Math.min(min, i - j);
}
}
return min;
}
public int lowerBound(int[] a, int lo, int hi, int target) {
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
if (a[mid] == target) return mid;
else if (a[mid] < target) lo = mid + 1;
else hi = mid - 1;
}
return hi;
}
}
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int sum = 0, min = Integer.MAX_VALUE;
int i = 0, j = 0;
while (j < nums.length) {
sum += nums[j++];
while (sum >= s) {
min = Math.min(min, j - i);
sum -= nums[i++];
}
}
if (min == Integer.MAX_VALUE) min = 0;
return min;
}
}